One-Way BG ANOVA

Andrew Ainsworth Psy 420

Topics

- Analysis with more than 2 levels
	- Deviation, Computation, Regression, Unequal Samples
- Specific Comparisons
	- Trend Analysis, Planned comparisons, Post-Hoc Adjustments
- Effect Size Measures
	- Eta Squared, Omega Squared, Cohen's *d*
- Power and Sample Size Estimates

Deviation Approach
\n
$$
SS_T = \sum Y_{ij} - GM
$$
²
\n $SS_A = n\sum \overline{Y}_j - GM$ ²
\n $SS_{S/A} = \sum Y_{ij} - \overline{Y}_j$ ²
\n• When the n's are not equal
\n $SS_A = \sum n_j \overline{Y}_j - GM$ ²

Analysis - Traditional

• The traditional analysis is the same

Analysis - Traditional

• Traditional Analysis – Unequal Samples

Unequal N and DFs

$$
df_{total} = N - 1 = (n_1 + n_2 + n_3 + \dots + n_k) - 1
$$

\n
$$
df_A = a - 1
$$

\n
$$
df_{S/A} = (n_1 - 1) + (n_2 - 1) + (n_3 - 1) + \dots + (n_k - 1)
$$

- In order to perform a complete analysis of variance through regression you need to cover all of the between groups variance
- To do this you need to:
	- Create $k 1$ dichotomous predictors (Xs)
	- Make sure the predictors don't overlap

- One of the easiest ways to ensure that the comps do not overlap is to make sure they are orthogonal
	- Orthogonal (independence)
		- The sum of each comparison equals zero
		- The sum of each cross-product of predictors equals zero

• Formulas

• Formu
 $SS_{(Total)} = SS_{(Y)}$

 $\begin{aligned} \mathcal{L}_{\text{(regression)}} = SS_{\text{(reg.}X_i)} + SS_{\text{(reg.}X_j)} \dots = \frac{SP(YX_i)^2}{SS(X_i)} + \frac{SP(YX_j)^2}{SS(X_i)} \end{aligned}$ $\sum_{(residual)} = SS_{(Total)} - SS_{(regression)}$ $\frac{(YX_i)^2}{(YX_i)^2} + \frac{SP(YX_i)}{SS(XX_i)}$ $\frac{(YX_i)^2}{(X_i)} + \frac{SP(YX_i)}{SS(X_i)}$ $S_{(Total)} - SS_{(regression)}$
 $[SP(YX_i)][SS(X_j)]\cdots [SS(X_k)]-[SP(YX_j)]\cdots [SP(YX_k)]$ $\begin{aligned} \mathcal{S}_{\text{isidual}} & = \mathfrak{O}(\mathcal{S}_{\text{Total}}) - \mathfrak{O}(\mathcal{S}_{\text{regression}}) \ & \quad [\text{SP}(YX_i)][SS(X_j)] \cdots [SS(X_k)] - [SP(YX_j)] \cdots [SP(YX_k)] \ & \quad [\text{SS}(X_i)][SS(X_j)] \cdots [SS(X_k)] - [SP(X_i X_j)]^2 [SP(X_i X_k)]^2 \cdots [SP(X_k X_k)]^2 \end{aligned}$ $\sum_{(reg,X_j)}$ \cdots $\frac{\Delta P(X_i)}{SS(X_i)}$ \cdots $\frac{\Delta I(X_i)}{SS(X_i)}$ $r_{regression} = SS_{(reg.X_i)} + SS_{(reg.X_i)}$ $\frac{i}{i}$ + $\frac{5I(IX_j)}{SS(X_j)}$ *i* $\frac{[S(X_i)] [S(X_j)] [S(X_k)]}{[S(S(X_j)]... [S(S(X_k)]]}$ $\frac{SP(YX_i)^2}{SP(YX_i)} + \frac{SP(YX_i)}{SP(YX_i)}$ SS _(Total) = SS _(Y)
 SS _(regression) = SS _(reg.X_i) + SS³ $\frac{P(YX_i)^2}{SS(X_i)} + \frac{SP(YX_i)}{SS(X_i)}$ SS _(regression) = SS _(reg.X_i) + *SS*
 SS _(residual) = SS _(Total) - SS $SS_{(residual)} = SS_{(Total)} - SS_{(regression)}$
 $[SP(YX_i)][SS(X_j)] \cdots [SS(X_k)] - [SP(YX_j)] \cdots [SP(YX_k)]$ $SSS(X_i)|[SS(X_j)]\cdots[SS(X_k)]$
 $SS(X_i)|[SS(X_j)]\cdots[SS(X_k)]$ $\cdots = \frac{SP(YX_i)^2}{SS(X_i)} + \frac{SP(YX_i)^2}{SS(X_i)} \cdots$ $US(X_i)$ $US(X_j)$
 $...[SS(X_k)]-[SP(YX_j)]...[SP(YX_k)]$ $\frac{\left[\left[SS(X_j)\right]\cdots\left[SS(X_k)\right]-\left[SP(YX_j)\right]\cdots\left[SP(YX_k)\right]\right]}{\left[\left[SS(X_k)\right]-\left[SP(X_iX_j)\right]^2\left[SP(X_iX_k)\right]^2\cdots\left[SP(X_jX_k)\right]^2}$

Example
\n
$$
SS(Y) = 708 - \frac{(100)^2}{15} = 708 - \frac{10,000}{15} = 708 - 666.67 = 41.33
$$
\n
$$
SS(X_1) = 30 - \frac{(0)^2}{15} = 30
$$
\n
$$
SS(X_2) = 10 - \frac{(0)^2}{15} = 10
$$

• Example $(YX_1) = 20 - \frac{(100)(0)}{15} = 20$ $(YX_2) = 12 - \frac{(100)(0)}{15} = 12$ $(X_1 X_2) = 0 - \frac{(0)(0)}{15} = 0$ 15 15 15 *SP YX SP YX* $SP(X_1X)$

$$
SS_{(Total)} = 41.33
$$

\n
$$
SS_{(reg)} = \frac{20^2}{30} + \frac{12^2}{10} = \frac{400}{30} + \frac{144}{10} = 13.33 + 14.4 = 27.73
$$

\n
$$
SS_{(res)} = 41.33 - 27.73 = 13.6
$$

- $F_{crit}(2,12) = 3.88$, since 12.253 is greater than 3.88 you reject the null hypothesis.
- There is evidence that drug type can predict level of

• Example

Example
 $P_1 = \frac{20(10) - 12(0)}{30(10) - 12(0)} = \frac{200 - 0}{300 - 0} = .67$ $\frac{1}{2} = \frac{\frac{30(10) - 2(0)}{30(10) - (0)^2}}{300 - 0} = \frac{360 - 0}{300 - 0} = 1.2$ $\frac{1}{(10)-(0)^2} = \frac{1}{300-0} = 1.2$
 $b_1(\bar{X}_1) - b_2(\bar{X}_2) = 6.67 - .67(0) - 1.2(0) = 6.67$ $Y' = 6.67 + .67(X_1) + 1.2(X_2)$ $\frac{20(10) - 12(0)}{30(10) - (0)^2} = \frac{200 - 0}{300 - 0}$ $\frac{2(30) - 20(0)}{30(10) - (0)^2} = \frac{360 - 0}{300 - 0}$ $a = \overline{Y} - b_1(\overline{X}_1) - b_2(\overline{X}_2) = 6.6$
 Y ' = 6.67 + .67(*X*₁) + 1.2(*X*₂) *b* $b_2 = \frac{12(30) - 20(0)}{30(10) - (0)^2} =$
 $a = \overline{Y} - b_1(\overline{X}_1) - b_2(\overline{X})$

• SPSS

Mode l Summa ry

a. Predi ctors: (Constant), X2, X1

• SPSS

ANO VAb

ANO VA ^b						
Model		Sum of Squares	df	Mean Square		Sig.
	Regression	27.733	◠	13.867	12.235	.001 ⁸
	Residual	13.600	12	1.133		
	Total	41.333	14			

a. Pred ictors: (Constant), X2, X1

b. Dependent Variable: Y

• SPSS

Coefficients^a

a. Dependent Variable: Y

• F-test for Comparisons

$$
F = \frac{n(\sum w_j \overline{Y}_j)^2 / \sum w_j^2}{MS_{S/A}} = \frac{SS_{(reg.X_j)}}{MS_{(resid)}}
$$

- $n =$ number of subjects in each group
- $\sum w_j \overline{Y}_j^2$ = squared sum of the weighted means
- $\sum w_j$ = sum of the squared coefficients
- $MS_{S/A}$ = mean square error from overall ANOVA

• If each group has a different sample size...

 2 / \sum $\frac{1}{2}$ $\overline{MS}_{S/A}$ $(\sum w_j \overline{Y}_j)^2 / \sum (w_j^2 / n_j)$ *F*

• Example (X_1) (X_2) 2 $2(1)^2(1)^2$ 2 $\sqrt[2]{(0^2+(1)^2+(-1)^2)}$ 2 $5[(2)(8)+(-1)(7.2)+(-1)(4.8)]$ $\sqrt{(2^2 + (-1)^2 + (-1)^2)}$ 1.13 $X_{1} = \frac{1}{1.13}$
5[16 - 7.2 - 4.8]²/6 $=$ $\frac{13.33}{1.13} = 11.8$ $\frac{(2-4.8)^2}{1.13} = \frac{13.33}{1.13}$ $5[(0)(8)+(1)(7.2)+(-1)(4.8)]$ $(0^2 + (1)^2 + (-1)^2)$ 1.13 X_2) = $\frac{1.13}{5[0+7.2-4.8]^2/2} = \frac{14.4}{1.13} = 12.74$ $\frac{2-4.81^{2}/2}{1.13} = \frac{14.4}{1.13}$ $\overline{F}_{(X)}$ $\overline{F}_{(X)}$

- Trend Analysis
	- If you have ordered groups (e.g. they differ in amount of Milligrams given; 5, 10, 15, 20)
	- You often will want to know whether there is a consistent trend across the ordered groups (e.g. linear trend)
	- Trend analysis comes in handy too because there are orthogonal weights already worked out depending on the number of groups (pg. 703)

• Different types of trend and coefficients for 4 groups

• Mixtures of Linear and Quadratic Trend

- Planned comparisons if the comparisons are planned than you test them without any correction
- Each F-test for the comparison is treated like any other F-test
- You look up an F-critical value in a table with df_{comp} and df_{error} .

• Example – if the comparisons are planned than you test them without any correction…

$F_{\text{crit}}(1,12) = 4.75$

- F_{x1} , since 11.8 is larger than 4.75 there is evidence that the subjects in the control group had higher anxiety than the treatment groups
- F_{x2} , since 12.75 is larger than 4.75 there is evidence that subjects in the Scruital group reporter lower anxiety than the Ativan group

• Post hoc adjustments

- Scheffé
	- This is used for complex comparisons, and is conservative
	- Calculate F_{comp} as usual
	- $F_S = (a-1)F_C$
		- where F_s is the new critical value
		- $a 1$ is the number of groups minus 1
		- F_c is the original critical value

• Post hoc adjustments

- Scheffé Example
	- $F_{X1} = 11.8$
	- $F_s = (3 1) * 4.75 = 9.5$
	- Even with a post hoc adjustment the difference between the control group and the two treatment groups is still significant

• Post hoc adjustments

- Tukey's Honestly Significant Difference (HSD) or Studentized Range Statistic
	- For all pairwise tests, no pooled or averaged means
	- F_{comp} is the same

• $F_T = \frac{4T}{\epsilon}$, q_T is a tabled value on pgs. 699-700 2 2 *T T q F*

- Post hoc adjustments
	- Tukey's Honestly Significant Difference (HSD) or Studentized Range Statistic
		- Or if you have many pairs to test you can calculate a significant mean difference based on the HSD

•
$$
\overline{d}_T = q_T \sqrt{\frac{MS_{S/A}}{n}}
$$
, where q_T is the same as before

•
$$
\bar{d}_T = q_T \sqrt{MS_{S/A} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)/2}
$$
, when unequal samples

- Post hoc adjustments
	- Tukey's example

$$
F_T = \frac{3.77^2}{2} = 7.11
$$

• Since 12.74 is greater than 7.11, the differences between the two treatment groups is still significant after the post hoc adjustment

- Post hoc adjustments
	- Tukey's example
	- Or you calculate:

$$
\bar{d}_T = 3.77 \sqrt{\frac{1.13}{5}} = 1.79
$$

- This means that any mean difference above 1.79 is significant according to the HSD adjustment
- $7.2 4.8 = 2.4$, since 2.4 is larger than 1.79...

• A significant effect depends:

- Size of the mean differences (effect)
- Size of the error variance
- Degrees of freedom
- Practical Significance
	- Is the effect useful? Meaningful?
	- Does the effect have any real utility?

- Raw Effect size
	- Just looking at the raw difference between the groups
	- Can be illustrated as the largest group difference or smallest (depending)
	- Can't be compared across samples or experiments

- Standardized Effect Size
	- Expresses raw mean differences in standard deviation units
	- Usually referred to as *Cohen's d*

$$
d = \frac{\left|\overline{Y}_l - \overline{Y}_s\right|}{\sqrt{M S_{S/A}}}
$$

• Standardized Effect Size

- Cohen established effect size categories
	- .2 = small effect
	- $.5 =$ moderate effect
	- .8 = large effect

- Percent of Overlap
	- There are many effect size measures that indicate the amount of total variance that is accounted for by the effect

- Percent of Overlap
	- *Eta Squared*

$$
\eta^2 = R^2 = \frac{SS_A}{SS_T}
$$

- *simply a descriptive statistic*
- *Often overestimates the degree of overlap in the population*

• *Omega Squared*

$$
\widehat{\omega}^2 = \frac{SS_A - df_A(MS_{S/A})}{SS_T + MS_{S/A}}
$$

- *This is a better estimate of the percent of overlap in the population*
- *Corrects for the size of error and the number of groups*

• Example

2 $\frac{27.73}{11.22} = .67$ 41.33

2 41.33
 $\frac{27.73 - 2(1.13)}{4} = \frac{27.73 - 2.26}{4} = \frac{25.47}{4} \approx .60$ $\frac{7.73 - 2(1.13)}{41.33 + 1.13} = \frac{27.73 - 2.26}{42.46} = \frac{25.47}{42.46}$ $\hat{\mathbf{z}}$

- For comparisons
	- You can think of this in two different ways

$$
\eta^2 = \frac{SS_{comp}}{SS_T} \, or \, \frac{SS_{comp}}{SS_A}
$$

• SS_{comp} = the numerator of the F_{comp}

• For comparisons - Example

$$
\eta_{X_1}^2 = \frac{13.33}{41.33} = .32
$$

or

$$
\eta_{X_1}^2 = \frac{13.33}{27.73} = .48
$$

Power and Sample Size

- Designing powerful studies
	- Select levels of the IV that are very different (increase the effect size)
	- Use a more liberal α level
	- Reduce error variability
	- Compute the sample size necessary for adequate power

Power and Sample Size

- Estimating Sample size
	- There are many computer programs that can compute sample size for you (PC-Size, G-power, etc.)
	- You can also calculate it by hand:

$$
n=\frac{2\sigma^2}{\delta^2}(z_{1-\alpha}+z_{1-\beta})^2
$$

- Where σ^2 = estimated $MS_{S/A}$
- δ = desired difference
- $Z_{\alpha-1} = Z$ value associated with 1 α

•
$$
z_{\beta-1} = Z
$$
 value associated with 1 - β

Power and Sample Size

- Estimating Sample size example
	- For overall ANOVA with alpha = .05 and power $= .80$ (values in table on page 113)

• Use the largest mean difference

• Use the largest mean difference
\n
$$
n = \frac{2(1.13)^2}{(8-4.8)^2} (1.96+.84)^2 = \frac{2.55}{10.24} (7.84) = 1.95 \approx 2
$$
\n• Roughly 2 subjects per group
\n• For all differences significant
\n
$$
n = \frac{2(1.13)^2}{(8-7.2)^2} (1.96+.84)^2 = \frac{2.55}{.64} (7.84) = 31.23 \approx 31
$$
\n• Roughly 31 subjects per group

• Roughly 2 subjects per group

• For all differences significant

$$
n = \frac{2(1.13)^2}{(8-7.2)^2} (1.96+.84)^2 = \frac{2.55}{.64} (7.84) = 31.23 \approx 31
$$