One-Way BG ANOVA

Andrew Ainsworth Psy 420

Topics

- Analysis with more than 2 levels
 - Deviation, Computation, Regression, Unequal Samples
- Specific Comparisons
 - Trend Analysis, Planned comparisons, Post-Hoc Adjustments
- Effect Size Measures
 - Eta Squared, Omega Squared, Cohen's d
- Power and Sample Size Estimates

Deviation Approach

$$SS_T = \sum Y_{ij} - GM^2$$

 $SS_A = n \sum \overline{Y}_j - GM^2$
 $SS_{S/A} = \sum Y_{ij} - \overline{Y}_j^2$
• When the n's are not equal
 $SS_A = \sum n_j \overline{Y}_j - GM^2$

Analysis - Traditional

• The traditional analysis is the same

Analysis - Traditional

• Traditional Analysis – Unequal Samples

$$df_{total} = N - 1 = (n_1 + n_2 + n_3 + \dots + n_k) - 1$$

$$df_A = a - 1$$

$$df_{S/A} = (n_1 - 1) + (n_2 - 1) + (n_3 - 1) + \dots + (n_k - 1)$$

- In order to perform a complete analysis of variance through regression you need to cover all of the between groups variance
- To do this you need to:
 - Create k 1 dichotomous predictors (Xs)
 - Make sure the predictors don't overlap

- One of the easiest ways to ensure that the comps do not overlap is to make sure they are orthogonal
 - Orthogonal (independence)
 - The sum of each comparison equals zero
 - The sum of each cross-product of predictors equals zero

Level of A	Case	Y	X_1	X_2	Y^2	X_1^2	X_2^2	YX ₁	YX ₂
	S ₁	8							
	S ₂	7							
Control	S ₃	9							
	S ₄	9							
	S 5	7							
	S ₆	8							
	S ₇	8							
Ativan	S 8	6							
	S ₉	7							
	S ₁₀	7							
	S ₁₁	4							
	S ₁₂	5							
Scruital	S ₁₃	4							
	S ₁₄	7							
	S ₁₅	4							
	Sum	100							
	Ν	15							
	Mean	6.67							

Level of A	Case	Y	X_1	X ₂	Y^2	X_1^2	X_2^2	YX ₁	YX ₂
	S ₁	8	2						
	S ₂	7	2						
Control	S ₃	9	2						
	S 4	9	2						
	S 5	7	2						
	S ₆	8	-1						
	S ₇	8	-1						
Ativan	S 8	6	-1						
	S ₉	7	-1						
	S ₁₀	7	-1						
	S ₁₁	4	-1						
	S ₁₂	5	-1						
Scruital	S ₁₃	4	-1						
	S ₁₄	7	-1						
	S ₁₅	4	-1						
	Sum	100							
	Ν	15							
	Mean	6.67							

Level of A	Case	Y	X_1	X ₂	Y^2	X_1^2	X_2^2	YX ₁	YX ₂	X_1X_2
	S 1	8	2	0						0
	S ₂	7	2	0						0
Control	S ₃	9	2	0						0
	S ₄	9	2	0						0
	S 5	7	2	0						0
	S 6	8	-1	1						-1
	S ₇	8	-1	1						-1
Ativan	S 8	6	-1	1						-1
	S ₉	7	-1	1						-1
	S ₁₀	7	-1	1						-1
	S ₁₁	4	-1	-1						1
	S ₁₂	5	-1	-1						1
Scruital	S ₁₃	4	-1	-1						1
	S ₁₄	7	-1	-1						1
	S ₁₅	4	-1	-1						1
	Sum	100	0	0						0
	Ν	15								
	Mean	6.67	0	0						

Level of A	Case	Y	X_1	X ₂	Y^2	X_1^{2}	X_2^2	YX ₁	YX ₂	X_1X_2
	S ₁	8	2	0	64	4	0	16	0	0
	S ₂	7	2	0	49	4	0	14	0	0
Control	S ₃	9	2	0	81	4	0	18	0	0
	S 4	9	2	0	81	4	0	18	0	0
	S 5	7	2	0	49	4	0	14	0	0
	S 6	8	-1	1	64	1	1	-8	8	-1
	S ₇	8	-1	1	64	1	1	-8	8	-1
Ativan	S 8	6	-1	1	36	1	1	-6	6	-1
	S ₉	7	-1	1	49	1	1	-7	7	-1
	S ₁₀	7	-1	1	49	1	1	-7	7	-1
	S ₁₁	4	-1	-1	16	1	1	-4	-4	1
	S ₁₂	5	-1	-1	25	1	1	-5	-5	1
Scruital	S ₁₃	4	-1	-1	16	1	1	-4	-4	1
	S ₁₄	7	-1	-1	49	1	1	-7	-7	1
	S ₁₅	4	-1	-1	16	1	1	-4	-4	1
	Sum	100	0	0	708	30	10	20	12	0
	Ν	15								
	Mean	6.67	0	0						

Formulas

 $SS_{(Total)} = SS_{(Y)}$

 $SS_{(regression)} = SS_{(reg.X_{i})} + SS_{(reg.X_{j})} \dots = \frac{SP(YX_{i})^{2}}{SS(X_{i})} + \frac{SP(YX_{j})^{2}}{SS(X_{j})} \dots$ $SS_{(residual)} = SS_{(Total)} - SS_{(regression)}$ $b_{i} = \frac{[SP(YX_{i})][SS(X_{j})] \dots [SS(X_{k})] - [SP(YX_{j})] \dots [SP(YX_{k})]}{[SS(X_{i})][SS(X_{j})] \dots [SS(X_{k})] - [SP(X_{i}X_{j})]^{2} [SP(X_{i}X_{k})]^{2} \dots [SP(X_{j}X_{k})]^{2}}$

$$SS(Y) = 708 - \frac{(100)^2}{15} = 708 - \frac{10,000}{15} = 708 - 666.67 = 41.33$$
$$SS(X_1) = 30 - \frac{(0)^2}{15} = 30$$
$$SS(X_2) = 10 - \frac{(0)^2}{15} = 10$$

• Example $SP(YX_1) = 20 - \frac{(100)(0)}{15} = 20$ $SP(YX_2) = 12 - \frac{(100)(0)}{15} = 12$ $SP(X_1X_2) = 0 - \frac{(0)(0)}{15} = 0$

$$SS_{(Total)} = 41.33$$

$$SS_{(reg)} = \frac{20^2}{30} + \frac{12^2}{10} = \frac{400}{30} + \frac{144}{10} = 13.33 + 14.4 = 27.73$$

$$SS_{(res)} = 41.33 - 27.73 = 13.6$$

Source	SS	df	MS	F
Reg	27.73	2	13.867	12.235
Res	13.60	12	1.133	
Total	41.33	14		

- $F_{crit}(2,12) = 3.88$, since 12.253 is greater than 3.88 you reject the null hypothesis.
- There is evidence that drug type can predict level of anxiety

• Example

 $b_{1} = \frac{20(10) - 12(0)}{30(10) - (0)^{2}} = \frac{200 - 0}{300 - 0} = .67$ $b_{2} = \frac{12(30) - 20(0)}{30(10) - (0)^{2}} = \frac{360 - 0}{300 - 0} = 1.2$ $a = \overline{Y} - b_{1}(\overline{X}_{1}) - b_{2}(\overline{X}_{2}) = 6.67 - .67(0) - 1.2(0) = 6.67$ $Y' = 6.67 + .67(X_{1}) + 1.2(X_{2})$

• SPSS

Model Summary

				Std. Error of
Model	R	R Square	Adjusted R Square	the Estimate
1	.819 ^a	.671	.616	1.06458

a. Predictors: (Constant), X2, X1

• SPSS

ANO VA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	27.733	2	13.867	12.235	.001 ^a
	Residual	13.600	12	1.133		
	Total	41.333	14			

a. Predictors: (Constant), X2, X1

b. Dependent Variable: Y

• SPSS

Coefficients^a

		<u>Unstandardized Coefficients</u>		Stan dardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	6.667	.275		24.254	.000
	X1	.667	.194	.568	3.430	.005
	X2	1.200	.337	.590	3.565	.004

a. Dependent Variable: Y

• F-test for Comparisons

$$F = \frac{n(\sum w_j \overline{Y}_j)^2 / \sum w_j^2}{MS_{S/A}} = \frac{SS_{(reg.X_j)}}{MS_{(resid)}}$$

- n = number of subjects in each group
- $\sum w_j \overline{Y}_j^2$ = squared sum of the weighted means
- $\sum w_j$ = sum of the squared coefficients
- $MS_{S/A}$ = mean square error from overall ANOVA

• If each group has a different sample size...

 $F = \frac{\left(\sum w_j \overline{Y}_j\right)^2 / \sum \left(w_j^2 / n_j\right)}{=}$ $MS_{S/A}$

• Example $\frac{5[(2)(8)+(-1)(7.2)+(-1)(4.8)]^2}{[2^2+(-1)^2+(-1)^2]}$ 113 $=\frac{5[16-7.2-4.8]^2/6}{1.13}=\frac{13.33}{1.13}=11.8$ $5[(0)(8)+(1)(7.2)+(-1)(4.8)]^{2} / [0^{2}+(1)^{2}+(-1)^{2}]$ $F_{(X_2)} = -$ 1.13 $=\frac{5[0+7.2-4.8]^2/2}{1.13}=\frac{14.4}{1.13}=12.74$

- Trend Analysis
 - If you have ordered groups (e.g. they differ in amount of Milligrams given; 5, 10, 15, 20)
 - You often will want to know whether there is a consistent trend across the ordered groups (e.g. linear trend)
 - Trend analysis comes in handy too because there are orthogonal weights already worked out depending on the number of groups (pg. 703)

• Different types of trend and coefficients for 4 groups

 Mixtures of Linear and Quadratic Trend

- Planned comparisons if the comparisons are planned than you test them without any correction
- Each F-test for the comparison is treated like any other F-test
- You look up an F-critical value in a table with df_{comp} and df_{error} .

• Example – if the comparisons are planned than you test them without any correction...

$F_{crit}(1,12) = 4.75$

- F_{x1} , since 11.8 is larger than 4.75 there is evidence that the subjects in the control group had higher anxiety than the treatment groups
- F_{x2} , since 12.75 is larger than 4.75 there is evidence that subjects in the Scruital group reporter lower anxiety than the Ativan group

• Post hoc adjustments

- Scheffé
 - This is used for complex comparisons, and is conservative
 - Calculate F_{comp} as usual
 - $F_S = (a-1)F_C$
 - where F_S is the new critical value
 - a 1 is the number of groups minus 1
 - F_C is the original critical value

• Post hoc adjustments

- Scheffé Example
 - $F_{X1} = 11.8$
 - $F_s = (3-1) * 4.75 = 9.5$
 - Even with a post hoc adjustment the difference between the control group and the two treatment groups is still significant

• Post hoc adjustments

- Tukey's Honestly Significant Difference (HSD) or Studentized Range Statistic
 - For all pairwise tests, no pooled or averaged means
 - F_{comp} is the same

• $F_T = \frac{q_T^2}{2}$, q_T is a tabled value on pgs. 699-700

- Post hoc adjustments
 - Tukey's Honestly Significant Difference (HSD) or Studentized Range Statistic
 - Or if you have many pairs to test you can calculate a significant mean difference based on the HSD

•
$$\overline{d}_T = q_T \sqrt{\frac{MS_{S/A}}{n}}$$
, where q_T is the same as before

•
$$\overline{d}_T = q_T \sqrt{\left[MS_{S/A}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)\right]/2}$$
, when unequal samples

Specific Comparisons

- Post hoc adjustments
 - Tukey's example

$$F_T = \frac{3.77^2}{2} = 7.11$$

• Since 12.74 is greater than 7.11, the differences between the two treatment groups is still significant after the post hoc adjustment

Specific Comparisons

- Post hoc adjustments
 - Tukey's example
 - Or you calculate:

$$\overline{d}_T = 3.77 \sqrt{\frac{1.13}{5}} = 1.79$$

- This means that any mean difference above 1.79 is significant according to the HSD adjustment
- 7.2 4.8 = 2.4, since 2.4 is larger than 1.79...

• A significant effect depends:

- Size of the mean differences (effect)
- Size of the error variance
- Degrees of freedom
- Practical Significance
 - Is the effect useful? Meaningful?
 - Does the effect have any real utility?

- Raw Effect size
 - Just looking at the raw difference between the groups
 - Can be illustrated as the largest group difference or smallest (depending)
 - Can't be compared across samples or experiments

- Standardized Effect Size
 - Expresses raw mean differences in standard deviation units
 - Usually referred to as *Cohen's d*

$$d = \frac{\left| \overline{Y_l} - \overline{Y_s} \right|}{\sqrt{MS_{S/A}}}$$

- Standardized Effect Size
 - Cohen established effect size categories
 - .2 = small effect
 - .5 = moderate effect
 - .8 = large effect

- Percent of Overlap
 - There are many effect size measures that indicate the amount of total variance that is accounted for by the effect

- Percent of Overlap
 - Eta Squared

$$\eta^2 = R^2 = \frac{SS_A}{SS_T}$$

- simply a descriptive statistic
- Often overestimates the degree of overlap in the population

• Omega Squared

$$\widehat{\omega}^{2} = \frac{SS_{A} - df_{A}(MS_{S/A})}{SS_{T} + MS_{S/A}}$$

- This is a better estimate of the percent of overlap in the population
- Corrects for the size of error and the number of groups

• Example

 $\eta^2 = \frac{27.73}{41.33} = .67$

 $\widehat{\omega}^2 = \frac{27.73 - 2(1.13)}{41.33 + 1.13} = \frac{27.73 - 2.26}{42.46} = \frac{25.47}{42.46} \approx .60$

- For comparisons
 - You can think of this in two different ways

$$\eta^{2} = \frac{SS_{comp}}{SS_{T}} or \frac{SS_{comp}}{SS_{A}}$$

• SS_{comp} = the numerator of the F_{comp}

• For comparisons - Example

$$\eta_{X_1}^2 = \frac{13.33}{41.33} = .32$$

Or

$$\eta_{X_1}^2 = \frac{13.33}{27.73} = .48$$

Power and Sample Size

- Designing powerful studies
 - Select levels of the IV that are very different (increase the effect size)
 - Use a more liberal α level
 - Reduce error variability
 - Compute the sample size necessary for adequate power

Power and Sample Size

- Estimating Sample size
 - There are many computer programs that can compute sample size for you (PC-Size, G-power, etc.)
 - You can also calculate it by hand:

$$n = \frac{2\sigma^2}{\delta^2} (z_{1-\alpha} + z_{1-\beta})^2$$

- Where σ^2 = estimated MS_{S/A}
- δ = desired difference
- $Z_{\alpha-1} = Z$ value associated with 1 α

•
$$z_{\beta-1} = Z$$
 value associated with 1 - β

Power and Sample Size

- Estimating Sample size example
 - For overall ANOVA with alpha = .05 and power = .80 (values in table on page 113)

• Use the largest mean difference

$$n = \frac{2(1.13)^2}{(8-4.8)^2} (1.96 + .84)^2 = \frac{2.55}{10.24} (7.84) = 1.95 \approx 2$$

• Roughly 2 subjects per group

• For all differences significant

$$n = \frac{2(1.13)^2}{(8-7.2)^2} (1.96 + .84)^2 = \frac{2.55}{.64} (7.84) = 31.23 \approx 31$$

• Roughly 31 subjects per group